|
このデータに多項式モデル
y=β0+β1x+β2x2+…βpxp+ε, ε~N(0,σ2)
を当てはめてみます。0次多項式(定数), 1次多項式(直線)から6次多項式を当てはめて、それぞれのAICを計算し、何次多項式モデルが最も良いか選択してください。
解法その1
計量アナリシスの講義で、Rを使った多変量回帰を習った人は、x,x2,…,x6を変量として扱うことで、回帰式の係数や、残差平方和を求めることが出来ます。
解法その2
Excelのグラフ機能を使うことでも、多項式回帰の係数を求めることが出来ますので、ここから残差平方和を求めることでAICを計算できます。
まず、上の表をコピーして、エクセルに貼り付けます。貼り付けた部分を選択して、「挿入」「グラフ」「散布図」を選びます。
次にグラフを選択して「グラフ」「近似曲線の追加」を選びます。「線形近似」あるいは「多項式近似」を選んで、多項式近似を選んだ場合は「次数」も設定してください。0次多項式(定数)はこのような散布図を使わなくても式変形で計算できます。
「線形近似」あるいは「多項式近似」をクリックしたら、「OK」を押す前に「オプション」を選んで「グラフに数式を表示する」を選んでから「OK」を押すと、回帰式が表示されます。
0 件のコメント:
コメントを投稿